


















deficiency on cell viability in p53 proficient or p53 deficient
mouse fibroblasts. The transient nature of siRNA
knockdown as well as low levels of protein that may still
be present cannot entirely rule out the possibility that
SFPQ might still be indispensible. Consistent with these
results, an sfpq point mutation (Whitesnake) in zebra fish
embryos did not affect cell proliferation, but increased cell
death by �2-fold (54). Surprisingly, in our experiments,
there was a significant decrease in cell survival when SFPQ
expression was reduced in Rad51d-deficient cells. We
further demonstrate that SFPQ with RAD51D directly
interact, which may lead to SFPQ modulating the
strand invasion function of the BCDX2 complex,
similar to that reported for RAD51 (26). An alternative
possibility is the synthetic lethal phenotype occurs due to
the two proteins being required for non-overlapping
mutually exclusive pathways. For example, SFPQ is

also known to interact as a heterodimer with NONO
and was reported to protect free DSB ends that occur
during NHEJ (22). Therefore, it remains a formal possi-
bility that absence of both SFPQ and RAD51D is dis-
rupting the HR and NHEJ repair pathways. However,
this is unlikely to be fully responsible for a lethal pheno-
type since, to our knowledge, HR and NHEJ double
deficient cells have not been reported to confer significant
cell death in spite of increased DNA damage and cell
proliferation defects (55). Furthermore, previous reports
suggest that loss of NHEJ confers resistance to Top1
inhibitor, Camptothecin, while SFPQ deficient cells
seem to be highly sensitive to Camptothecin, consistent
with a primary role for SFPQ during HR (56).
Unexpectedly, our data demonstrate that SFPQ plays

an important role in the maintenance of sister chromatid
cohesion. A previous study showed that RAD51C

Figure 5. MMC treatment induced G2M arrest of SFPQ-deficient cells. (a) Representative cell-cycle distribution data of Rad51d+/+ and Rad51d�/�

cell lines transfected with siRNA were analyzed 72 h following MMC treatment. The proportion of cells in each cell-cycle stage (G0G1, S-phase,
G2M) is indicated. The initial peak marked as debris corresponds to dead cells, while the plateau after the G2M peak (indicated by the bold arrows)
corresponds to the aneuploid population of cells and were not included in the calculations. (b) The percentage of cells in the G1, S, and G2M phase
72 h following treatment. Each cell line was transfected with no siRNA or transfected with Sfpq siRNA (Rad51d+/+SFPQ KD Rad51d�/�SFPQ KD)
24 h prior to MMC treatment. The percentages of each stage of the cell cycle were calculated using ModFit software analysis (‘Materials and
Methods’ section). Error bars indicate the SEM percentages from at least three independent experiments.
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defective CL-V4B hamster cells had more than double the
number of cells with completely separated sister chroma-
tids that are not attached to centromeres. This phenotype
was attributed to premature sister chromatid separation at
the metaphase-anaphase transition but not observed in
XRCC2, XRCC3, nor BRCA1 defective cells (57).
However, similar to the differences observed in cells defi-
cient for cohesin proteins, an increase in the
interchromatid distance was observed with the chromatids
remaining attached to the centromeres in SFPQ deficient
cells (37). These data suggest that RAD51D and SFPQ
have distinct functions at different cell-cycle stages to
maintain sister chromatid interaction, with SFPQ likely
playing a role during cohesion formation during

replication rather than cohesion maintenance. RAD51D
deficiency however does not have any effect on the
cohesion phenotype and a knockdown of SFPQ in these
Rad51d�/� cells had a similar significant increase in
interchromatid distance.

Reduced expression of SFPQ also significantly increased
the number of spontaneous chromosomal aberrations. The
inability to maintain sister chromatid cohesion is known to
hinder the capacity to repair spontaneous and radiation
induced DSBs during the G2 phase in yeast (58,59).
However, the levels of spontaneous levels of chromosome
breaks are low, �1%, in human cells deficient for cohesin
proteins (37,38). Keep in mind that reduction of the recom-
binant GFP positive cells due to SFPQ deficiency in the

Figure 6. siRNA knockdown of SFPQ reduces HR mediated repair of DSBs. (a) Representative flow cytometric analyses of HeLa DRGFP cells
transfected with SFPQ siRNA, GAPDH siRNA and no siRNA followed 24 h later with pSCBASce vector and no pCBASce (No Sce I vector)
control. GFP positive cells from �20 000 counts are seen in the quadrant marked K1. (b) Effect of siRNA knockdown of SFPQ on
recombination-mediated repair of Sce I induced chromosomal DSB. The GFP positive cells indicate the percentage of recombination events. The
corresponding siRNA used for transfection is indicated while the HeLa DRGFP cells without the pCBASce vector (No Sce I vector) is the negative
control. The error bars indicate standard errors of values from two independent experiments performed in triplicate (**P< 0.01). Anti-SFPQ and
anti-NONO western blots of whole cell extracts were used to verify reduced SFPQ expression. b-Actin was used as loading control (Inset).
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HeLa DRGFP reporter system may not reflect the
increased distance of homologous strands because the
two GFP genes are repeated in tandem. Therefore, the
increased chromosomal aberrations in SFPQ deficient
cells may result from two different mechanisms being
affected, DSB DNA repair (HR and NHEJ) as well as
sister chromatid cohesion. A more recent report suggests
early and rapid recruitment of the SFPQ–NONO complex
directly to sites of DNA breaks and a delay in the repair of
the DSBs in SFPQ deficient cells (28).

The importance of proteins initially implicated in
spliceosome biogenesis for repairing DNA damage and
maintaining genome stability is becoming increasingly
clear. In a recent siRNA screen to identify genes involved
in genome stabilization, an mRNA processing cluster was
the most significantly enriched group of genes, with a
majority having a role in RNA splicing (60). RAD51C
has been attributed to maintaining genome integrity by
transduction of DNA damage signals resulting from
Chk2 activation as well as via the ATM/Chk1 pathway
(61,62). A separate large-scale screen identified targets of
ATM/ATR DNA checkpoint proteins and again dis-
covered that a large number of RNA processing and tran-
scription factors were ATM/ATR phosphorylation targets
(63). SFPQ now adds to the growing list of splicing related
factors required for HR repair that includes Pso4, Ntr1,
SPF45 and Gemin2, reported to be involved in DSB and
ICL repair as well as Holliday junction binding (64–67).
These results are also consistent with recent evidence for
transcription-associated recombination (TAR) in
mammals. TAR processes are proposed to rescue stalled
replication forks generated during S phase when replica-
tion encounters transcription processes or by replication
forks encountering eroding telomeres (68,69).
Disruptions in this pathway result in defective DNA
damage response leading to more cells progressing
through S and accumulating in G2M with increased
mutation and chromosomal aberration frequencies.

The genome instability phenotype conferred by reduced
levels of SFPQ may represent a combination of SFPQ
functions to efficiently repair DNA lesions and to ad-
equately form sister chromatid cohesion. The multiple
SFPQ functions in RNA processing, transport and tran-
scriptional regulation might also be contributing to this
phenotype as well as the synthetic lethality conferred by
absence of both SFPQ and RAD51D. This study therefore
provides the basis to further dissect out molecular mech-
anisms of HR and interacting pathways. Future biochem-
ical studies investigating SFPQ binding, protecting and
resolving HR intermediates will help decipher the precise
role of SFPQ during homology directed repair.
Additionally, SFPQ might prove to be a useful cancer
therapy target for inactivating multiple pathways in
chemotherapy resistant cancer cells that may already be
HR defective (70,71).
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